
UNIT-I 

Mathematical Logic 

 

Statements and notations: 

A proposition or statement is a declarative sentence that is either true or false (but not 

both). For instance, the following are propositions: “Paris is in France” (true), “London is in 

Denmark” (false), “2 < 4” (true), “4 = 7 (false)”. However the following are not propositions: 

“what is your name?” (this is a question), “do your homework” (this is a command), “this 

sentence is false” (neither true nor false), “x is an even number” (it depends on what x represents), 

“Socrates” (it is not even a sentence). The truth or falsehood of a proposition is called its truth 

value. 

Connectives: 

Connectives are used for making compound propositions. The main ones are the following 

(p and q represent given propositions): 

Name Represented Meaning 

Negation ¬p “not p” 

Conjunction p ∧  q “p and q” 

Disjunction p ∨  q “p or q (or both)” 

Exclusive Or p ⊕  q “either p or q, but  not both” 

Implication p → q “if p then  q” 

Biconditional p ↔ q “p if and only if q” 

 

Truth Tables: 

Logical identity 

Logical identity is an operation on one logical value, typically the value of a proposition that 

produces a value of true if its operand is true and a value of false if its operand is false. 

The truth table for the logical identity operator is as follows: 



Logical Identity 

p p 

T T 

F F 

Logical negation 

Logical negation is an operation on one logical value, typically the value of a proposition that 

produces a value of true if its operand is false and a value of false if its operand is true. 

The truth table for NOT p (also written as ¬p or ~p) is as follows: 

Logical Negation 

p ¬p 

T F 

F T 

Binary operations 

Truth table for all binary logical operators 

Here is a truth table giving definitions of all 16 of the possible truth functions of 2 binary 

variables (P,Q are thus boolean variables): 



P Q   0   1   2   3   4   5   6   7   8   9  10 11 12 13 14 15 

T T  F F F F F F F F T T T T T T T T 

T F  F F F F T T T T F F F F T T T T 

F T  F F T T F F T T F F T T F F T T 

F F  F T F T F T F T F T F T F T F T 

where T = true and F = false. 

Key: 

0, false, Contradiction 

1, NOR, Logical NOR 

2, Converse nonimplication 

3, ¬p, Negation 

4, Material nonimplication 

5, ¬q, Negation 

6, XOR, Exclusive disjunction 

7, NAND, Logical NAND 

8, AND, Logical conjunction 

9, XNOR, If and only if, Logical biconditional 

10, q, Projection function 

11, if/then, Logical implication 



12, p, Projection function 

13, then/if, Converse implication 

14, OR, Logical disjunction 

15, true, Tautology 

Logical operators can also be visualized using Venn diagrams. 

Logical conjunction 

Logical conjunction is an operation on two logical values, typically the values of two 

propositions, that produces a value of true if both of its operands are true. 

The truth table for p AND q (also written as p ∧ q, p & q, or p q) is as follows: 

Logical Conjunction 

p q p ∧ q 

T T T 

T F F 

F T F 

F F F 

In ordinary language terms, if both p and q are true, then the conjunction p ∧ q is true. For all 

other assignments of logical values to p and to q the conjunction p ∧ q is false. 

It can also be said that if p, then p ∧ q is q, otherwise p ∧ q is p. 



Logical disjunction 

Logical disjunction is an operation on two logical values, typically the values of two 

propositions, that produces a value of true if at least one of its operands is true. 

The truth table for p OR q (also written as p ∨ q, p || q, or p + q) is as follows: 

Logical Disjunction 

p q p ∨ q 

T T T 

T F T 

F T T 

F F F 

Logical implication 

Logical implication and the material conditional are both associated with an operation on two 

logical values, typically the values of two propositions, that produces a value of false just in the 

singular case the first operand is true and the second operand is false.The truth table associated 

with the material conditional if p then q (symbolized as p → q) and the logical implication p 

implies q (symbolized as p ⇒ q) is as follows: 

 

 



Logical Implication 

p q p → q 

T T T 

T F F 

F T T 

F F T 

 

 

Logical equality 

Logical equality (also known as biconditional) is an operation on two logical values, typically 

the values of two propositions, that produces a value of true if both operands are false or both 

operands are true.The truth table for p XNOR q (also written as p ↔ q ,p = q, or p ≡ q) is as 

follows: 

 

 

 

 



Logical Equality 

p q p ≡ q 

T T T 

T F F 

F T F 

F F T 

Exclusive disjunction 

Exclusive disjunction is an operation on two logical values, typically the values of two 

propositions, that produces a value of true if one but not both of its operands is true.The truth 

table for p XOR q (also written as p ⊕ q, or p ≠ q) is as follows: 

Exclusive Disjunction 

p q p ⊕ q 

T T F 

T F T 

F T T 

F F F 



Logical NAND 

The logical NAND is an operation on two logical values, typically the values of two 

propositions, that produces a value of false if both of its operands are true. In other words, it 

produces a value of true if at least one of its operands is false.The truth table for p NAND q (also 

written as p ↑ q or p | q) is as follows: 

Logical NAND 

p q p ↑ q 

T T F 

T F T 

F T T 

F F T 

It is frequently useful to express a logical operation as a compound operation, that is, as an 

operation that is built up or composed from other operations. Many such compositions are 

possible, depending on the operations that are taken as basic or "primitive" and the operations 

that are taken as composite or "derivative".In the case of logical NAND, it is clearly expressible 

as a compound of NOT and AND.The negation of a conjunction: ¬(p ∧ q), and the disjunction of 

negations: (¬p) ∨ (¬q) can be tabulated as follows: 

 

 

 



p q p ∧ q ¬(p ∧ q) ¬p ¬q (¬p) ∨ (¬q) 

T T T F F F F 

T F F T F T T 

F T F T T F T 

F F F T T T T 

Logical NOR 

The logical NOR is an operation on two logical values, typically the values of two propositions, 

that produces a value of true if both of its operands are false. In other words, it produces a value 

of false if at least one of its operands is true. ↓ is also known as the Peirce arrow after its 

inventor, Charles Sanders Peirce, and is a Sole sufficient operator. 

The truth table for p NOR q (also written as p ↓ q or p ⊥ q) is as follows: 

Logical NOR 

p q p ↓ q 

T T F 

T F F 

F T F 

F F T 



The negation of a disjunction ¬(p ∨ q), and the conjunction of negations (¬p) ∧ (¬q) can be 

tabulated as follows: 

p q p ∨ q ¬(p ∨ q) ¬p ¬q (¬p) ∧ (¬q) 

T T T F F F F 

T F T F F T F 

F T T F T F F 

F F F T T T T 

Inspection of the tabular derivations for NAND and NOR, under each assignment of logical 

values to the functional arguments p and q, produces the identical patterns of functional values 

for ¬(p ∧ q) as for (¬p) ∨ (¬q), and for ¬(p ∨ q) as for (¬p) ∧ (¬q). Thus the first and second 

expressions in each pair are logically equivalent, and may be substituted for each other in all 

contexts that pertain solely to their logical values. 

This equivalence is one of De Morgan's laws. 

The truth value of a compound proposition depends only on the value of its components. 

Writing F for “false” and T for “true”, we can summarize the meaning of the connectives in the 

following way: 

p q ¬p p ∧  q p ∨  q p ⊕  q p → q p ↔ q 
T T F T T F T T 

T F F F T T F F 

F T T F T T T F 

F F T F F F T T 

Note that ∨  represents a non-exclusive or, i.e., p ∨  q is true when any ofp, q is true and 

also when both are true. On the other hand ⊕ represents an exclusive or, i.e., p ⊕  q is true only 

when exactly one of p and q is true. 



 

Well formed formulas(wff): 

Not all strings can represent propositions of the predicate logic. Those which produce a 

proposition when their symbols are interpreted must follow the rules given below, and they are 

called wffs(well-formed formulas) of the first order predicate logic.  

Rules for constructing Wffs  

A predicate name followed by a list of variables such as P(x, y), where P ispredicate name, and x 

and y are variables, is called an atomic formula.  

 

A well formed formula of predicate calculus is obtained by using the following rules. 

    1. An atomic formula is a wff. 

    2. If A is a wff, then 7A is also a wff. 

    3. If A and B are wffs, then (A V B), (A ٨ B), (A → B) and (A D  B).  

    4. If A is a wff and x is a any variable, then (x)A and ($x)A are wffs. 

    5. Only those formulas obtained by using (1) to (4) are wffs.  

     Since we will be concerned with only wffs, we shall use the term formulas for wff. We shall 

follow the same conventions regarding the use of parentheses as was done in the case of statement 

formulas. 

 

Wffs are constructed using the following rules:  

1. True and False are wffs.  

2. Each propositional constant (i.e. specific proposition), and each propositional variable 

(i.e. a variable representing propositions) are wffs.  

3. Each atomic formula (i.e. a specific predicate with variables) is a wff.  

4. If A, B, and C are wffs, then so are A, (A B), (A B), (A B), and (A B).  

5. If x is a variable (representing objects of the universe of discourse), and A is a wff, then 

so are x A and x A .  

For example, "The capital of Virginia is Richmond." is a specific proposition. Hence it is a wff 

by Rule 2.  

Let B be a predicate name representing "being blue" and let x be a variable. Then B(x) is an 



atomic formula meaning "x is blue". Thus it is a wff by Rule 3. above. By applying Rule 5. to 

B(x), xB(x) is a wff and so is xB(x). Then by applying Rule 4. to them x B(x) x B(x) is 

seen to be a wff. Similarly if R is a predicate name representing "being round". Then R(x) is an 

atomic formula. Hence it is a wff. By applying Rule 4 to B(x) and R(x), a wff B(x) R(x) is 

obtained.  

In this manner, larger and more complex wffs can be constructed following the rules given 

above.  

Note, however, that strings that can not be constructed by using those rules are not wffs. For 

example, xB(x)R(x), and B( x ) are NOT wffs, NOR are B( R(x) ), and B( x R(x) ) .  

More examples: To express the fact that Tom is taller than John, we can use the atomic formula 

taller(Tom, John), which is a wff. This wff can also be part of some compound statement such 

as taller(Tom, John) taller(John, Tom), which is also a wff. 

If x is a variable representing people in the world, then taller(x,Tom), x taller(x,Tom), x 

taller(x,Tom), x y taller(x,y) are all wffs among others. However, taller(  x,John) and 

taller(Tom Mary, Jim), for example, are NOT wffs.  

 

Tautology, Contradiction, Contingency: 

A proposition is said to be a tautology if its truth value is T for any assignment of truth values to 

its  components. Example: The proposition p ∨ ¬p is a tautology. 

A proposition is said to be a contradiction if its truth value is F for any assignment of truth values 

to its components. Example: The proposition p ∧ ¬p is a contradiction. 

A proposition that is neither a tautology nor a contradiction is called a contingency. 

p ¬p p ∨  ¬p p ∧  ¬p 
T F T F 

T F T F 

F T T F 

F T T F 

Equivalence Implication: 

We say that the statements r and s are logically equivalent if their truth tables are identical. For 

example the truth table of  



 

shows that is equivalent to . It is easily shown that the statements r and s are 

equivalent if and only if  is a tautology.  

Normal forms: 

Let A(P1, P2, P3, …, Pn) be a statement formula where P1, P2, P3, …, Pn are the atomic 

variables. If A has truth value T for all possible assignments of the truth values to the variables 

P1, P2, P3, …, Pn , then A is said to be a tautology. If A has truth value F, then A is said to be 

identically false or a contradiction. 

Disjunctive Normal Forms 

A product of the variables and their negations in a formula is called an elementary product. A 

sum of the variables and their negations is called an elementary sum. That is, a sum of 

elementary products is called a disjunctive normal form of the given formula. 

Example: 

 

(1)  

 

(2)  

 

(3)  

 

(4)  

 

(5)  

Conjunctive Normal Forms 

A formula which is equivalent to a given formula and which consists of a product of elementary sums is 

called a conjunctive normal form of a given formula. 

Example: 

 

(1)  

 

(2)  

 

(3)  

 

(4)  

 



Predicates 

Predicative logic: 

A predicate or propositional function is a statement containing variables. For instance “x + 2 = 

7”, “X is American”, “x < y”, “p is a prime number” are predicates. The truth value of the 

predicate depends on the value assigned to its variables. For instance if we replace x with 1 in the 

predicate “x + 2 = 7” we obtain “1 + 2 = 7”, which is false, but if we replace it with 5 we get “5 

+ 2 = 7”, which is true. We represent a predicate by a letter followed by the variables enclosed 

between parenthesis: P (x), Q(x, y), etc. An example for P (x) is a value of x for which P (x) is 

true. A counterexample is a value of x for which P (x) is false. So, 5 is an example for “x + 2 = 

7”, while 1 is a counterexample. Each variable in a predicate is assumed to belong to a universe 

(or domain) of discourse, for instance in the predicate “n is an odd integer” ’n’ represents an 

integer, so the universe of discourse of n is the set of all integers. In “X is American” we may 

assume that X is a human being, so in this case the universe of discourse is the set of all human 

beings. 

 

Free & Bound variables: 

Let's now turn to a rather important topic: the distinction between free variable s and bound 

variables. 

Have a look at the following formula: 

 

The first occurrence of x is free, whereas the second and third occurrences of x are bound, 

namely by the first occurrence of the quantifier . The first and second occurrences of the 

variable y are also bound, namely by the second occurrence of the quantifier . 

Informally, the concept of a bound variable can be explained as follows: Recall that 

quantifications are generally of the form:  



 

or  

 

where may be any variable. Generally, all occurences of this variable within the quantification 

are bound. But we have to distinguish two cases. Look at the following formula to see why:  

 

1.  may occur within another, embedded, quantification or , such as the in 

in our example. Then we say that it is bound by the quantifier of this 

embedded quantification (and so on, if there's another embedded quantification over 

within ). 

2.Otherwise, we say that it is bound by the top-level quantifier (like all other occurences of 

in our example). 

Here's a full formal simultaneous definition of free and bound: 

1.Any occurrence of any variable is free in any atomic formula. 

2.No occurrence of any variable is bound in any atomic formula. 

3.If an occurrence of any variable is free in or in , then that same occurrence is free in 

, , , and . 

4. If an occurrence of any variable is bound in or in , then that same occurrence is 

bound in , , , . Moreover, that same occurrence is bound in 

and as well, for any choice of variable y. 

5.In any formula of the form or (where y can be any variable at all in this case) the 

occurrence of y that immediately follows the initial quantifier symbol is bound. 

6.If an occurrence of a variable x is free in , then that same occurrence is free in and 

, for any variable y distinct from x. On the other hand, all occurrences of x that are 

free in , are bound in and in . 

If a formula contains no occurrences of free variables we call it a sentence.  



Rules of inference: 

The two rules of inference are called rules P and T.  

  Rule P: A  premise may be introduced at any point in the derivation. 

  Rule T: A formula S may be introduced in a derivation if s is tautologically implied by  

                any one or  more of the preceding  formulas in the derivation. 

                    Before proceeding the actual process of derivation, some important list of  implications 

and equivalences are given in the following tables. 

 Implications 

          I1       P٨Q =>P                                 }      Simplification 

          I2       PQ٨ =>Q  

          I3       P=>PVQ                                   }      Addition 

          I4       Q =>PVQ 

          I5       7P => P→ Q 

          I6       Q => P→ Q  

          I7       7(P→Q) =>P 

          I8       7(P → Q) => 7Q 

          I9       P, Q => P ٨ Q  

          I10     7P, PVQ => Q                              ( disjunctive syllogism) 

          I11     P, P→ Q => Q                              ( modus ponens ) 

          I12     7Q, P → Q => 7P                         (modus tollens ) 

          I13     P → Q, Q → R => P → R             ( hypothetical syllogism) 

          I14         P V Q, P → Q, Q → R => R      (dilemma) 

         Equivalences       

           E1          77P <=>P 

           E2          P   ٨ Q <=> Q ٨   P                                   }      Commutative laws 

           E3          P V Q <=> Q V P 

           E4          (P ٨ Q) ٨ R   <=> P ٨ (Q ٨ R)                   }      Associative laws 

           E5         (P V Q) V R <=> PV (Q V R) 

           E6          P ٨ (Q V R) <=> (P ٨ Q) V (P ٨ R)           }       Distributive laws 

           E7         P V (Q ٨ R) <=> (P V Q) ٨ (PVR) 

           E8         7(P ٨ Q)    <=> 7P V7Q 

           E9         7(P V Q)   <=>7P ٨ 7Q                              }       De Morgan’s laws   

           E10        P V P <=> P   

           E11       P ٨ P   <=> P  



           E12       R V (P ٨ 7P) <=>R 

           E13        R ٨   (P V 7P) <=>R  

           E14        R V (P V 7P)   <=>T            

           E15        R ٨ (P ٨ 7P) <=>F 

           E16        P →   Q   <=> 7P V Q 

           E17        7 (P→ Q)   <=> P ٨ 7Q 

           E18        P →   Q     <=> 7Q →   7P   

           E19        P →   (Q →   R)    <=> (P ٨ Q) →   R 

           E20        7(PD Q) <=> P D  7Q  

           E21        PDQ    <=> (P → Q) ٨   (Q →   P)  

           E22        (PDQ)    <=> (P ٨ Q) V (7 P ٨ 7Q) 

 Example 1.Show that R is logically derived from P → Q, Q →    R, and P 

     

   Solution.       {1}                  (1)      P → Q     Rule P 

                        {2}                  (2)      P              Rule P 

                        {1, 2}              (3)      Q              Rule (1),  (2) and I11  

                        {4}                  (4)      Q → R     Rule P  

                        {1, 2, 4}          (5)      R              Rule (3), (4) and I11.   

Example 2.Show that S V R tautologically implied by ( P V  Q) ٨  ( P → R) ٨ ( Q → S ). 

Solution .         {1}          (1)      P V Q                      Rule P 

                        {1}          (2)      7P → Q                  T, (1), E1 and E16 

                        {3}          (3)      Q → S                     P 

                        {1, 3}      (4)     7P → S                    T, (2), (3), and I13  

                        {1, 3}      (5)     7S → P                    T, (4), E13 and E1 

                        {6}          (6)       P → R                    P 

                        {1, 3, 6}  (7)      7S → R                   T, (5), (6), and I13 

                        {1, 3, 6)   (8)      S V R                      T, (7), E16 and E1  

Example 3. Show that 7Q, P→ Q => 7P 

Solution .             {1}        (1)    P → Q            Rule P 

                            {1}        (2)    7P → 7Q        T, and E 18 



                            {3}        (3)    7Q                   P 

                            {1, 3}    (4)    7P                   T, (2), (3), and I11 . 

Example 4 .Prove that R ٨ ( P V Q ) is a valid conclusion from the premises  PVQ , 

                        Q → R, P → M and 7M. 

Solution .    {1}             (1)      P → M            P 

                   {2}             (2)     7M                   P 

                   {1, 2}         (3)     7P                   T, (1), (2), and I12 

                   {4}             (4)      P V Q             P 

                   {1, 2 , 4}    (5)      Q                    T, (3), (4), and I10. 

                   {6}             (6)      Q → R            P 

                   {1, 2, 4, 6}  (7)      R                    T, (5), (6) and I11 

                   {1, 2, 4, 6}  (8)     R ٨ (PVQ)       T, (4), (7), and I9. 

            There is a third inference rule, known as rule CP or rule of conditional proof. 

Rule CP:  If we can derives s from R and a set of premises , then we can derive  R → S from the 

set of premises alone. 

Note.    1. Rule CP follows from the equivalence E10 which states that 

               ( P ٨   R ) → S óP → (R → S). 

             2. Let P denote the conjunction of the set of premises and let R be any formula  

                 The above equivalence states that if R is included as an additional premise and  

                 S is derived from P ٨ R then R → S can be derived from the premises P alone.  

             3. Rule CP is also called the deduction theorem and is generally used if the  

                 conclusion is of the form R → S. In such cases, R is taken as an additional 

                  premise and S is derived from the given premises and R. 

Example 5 .Show that R → S can be derived from the premises  

                    P → (Q → S), 7R V P , and  Q. 



Solution.              {1}                 (1)   7R V P                    P 

                            {2}                 (2)     R                          P, assumed premise     

                            {1, 2}             (3)   P                            T, (1), (2), and I10 

                            {4}                 (4)   P → (Q → S)           P 

                            {1, 2, 4}         (5)   Q →   S                   T, (3), (4), and I11 

                            {6}                 (6)    Q                             P 

                            {1, 2, 4, 6}     (7)    S                             T, (5), (6), and I11 

                            {1, 4, 6}         (8)   R → S                       CP. 

Example 6.Show that P → S can be derived from the premises, 7P V Q, 7Q V R, 

                   and R → S . 

  Solution. 

               

                {1}               (1)      7P V Q                 P 

                {2}               (2)       P                         P, assumed premise 

                {1, 2}           (3)       Q                        T, (1), (2) and I11 

                {4}               (4)       7Q V R                P 

                {1, 2, 4}       (5)       R                         T, (3), (4) and I11 

                {6}               (6)       R → S                  P 

                {1, 2, 4, 6}   (7)       S                          T, (5), (6) and I11 

                {2, 7}           (8)       P → S                  CP 

Example 7. ” If there was a ball game , then traveling was difficult. If they arrived on time, then 

traveling was not difficult. They arrived on time. Therefore, there was no ball game”. Show that 

these statements constitute a valid argument. 

Solution.       Let     P: There was a ball game 

                               Q: Traveling was difficult. 

                               R: They arrived on time.  

 Given premises are:     P → Q, R → 7Q and R    conclusion is: 7P  



        {1}             (1) P → Q              P 

        {2}             (2) R → 7Q            P 

        {3}             (3) R                      P 

        {2, 3}         (4)  7Q                  T, (2), (3), and I11 

        {1, 2, 3}     (5) 7P                   T, (2), (4) and I12  

  Consistency of premises:   

 Consistency 

         A set of formulas H1, H2, …, Hm is said to be consistent if their conjunction has the truth 

value T for some assignment of the truth values to be atomic appearing in H1, H2, …, Hm.  

Inconsistency 

        If for every assignment of the truth values to the atomic variables, at least one of the 

formulas H1, H2, … Hm is false, so that their conjunction is identically false, then the formulas 

H1, H2, …, Hm are called inconsistent.  

       A set of formulas H1, H2, …, Hm is inconsistent, if their conjunction implies a 

contradiction, that is  H1٨  H2٨  … ٨ Hm => R ٨ 7R 

         Where R is any formula. Note that R ٨ 7R is a contradiction and it is necessary and 

sufficient that  H1, H2, …,Hm are inconsistent  the formula. 

      

 Indirect method of proof 

          In order to show that a conclusion C follows logically from the premises H1, H2,…, Hm, 

we assume  that C  is false and consider 7C as an additional premise. If the new set of premises is 

inconsistent, so that they imply a contradiction, then the assumption that 7C is true does not hold 

simultaneously with H1٨ H2٨    ….. ٨  Hm  being true. Therefore, C is true whenever   H1٨ H2٨ 

 ..…   ٨ Hm  is true. Thus, C follows logically from the premises H1, H2   ….., Hm.  

Example 8  Show that 7(P ٨ Q) follows from 7P٨ 7Q. 

Solution.  



               We introduce 77 (P٨ Q) as an additional premise and show that this additional premise 

leads to a contradiction. 

   {1}         (1) 77(P٨ Q)          P assumed premise 

   {1}         (2)   P٨ Q               T, (1) and E1 

   {1}         (3)   P                     T, (2) and I1 

   {1}         {4) 7P٨7Q               P 

   {4}         (5) 7P                     T, (4) and I1 

   {1, 4}     (6)  P٨ 7P               T, (3), (5) and I9   

               Here (6) P٨ 7P is a contradiction. Thus {1, 4} viz. 77(P٨ Q)  and 7P٨ 7Q  leads  

           to a contradiction P ٨ 7P. 

Example 9Show that the following premises are inconsistent. 

         1.      If Jack misses many classes through illness, then he fails high school. 

         2.      If Jack fails high school, then he is uneducated. 

         3.      If Jack reads a lot of books, then he is not uneducated. 

         4.      Jack misses many classes through illness and reads a lot of books. 

Solution. 

    P: Jack misses many classes. 

    Q: Jack fails high school. 

    R: Jack reads a lot of books. 

    S: Jack is uneducated.  

The premises are P→ Q, Q →  S,  R→   7S and P٨ R    

     {1}             (1)    P→Q                             P 

     {2}             (2)    Q→ S                            P 

     {1, 2}         (3)    P → S                           T, (1), (2) and I13 

     {4}             (4)    R→ 7S                          P 

     {4}             (5)     S → 7R                        T, (4), and E18 

     {1, 2, 4}     (6)     P→7R                          T, (3), (5) and I13 

     {1, 2, 4}     (7)      7PV7R                         T, (6) and E16  

     {1, 2, 4}     (8)      7(P٨R)                        T, (7) and E8 



     {9}             (9)      P٨ R                            P      

     {1, 2, 4, 9)  (10)    (P٨ R) ٨ 7(P٨ R)        T, (8), (9) and I9   

The rules above can be summed up in the following table. The "Tautology" column shows how 

to interpret the notation of a given rule. 

Rule of inference Tautology Name 

 

 

Addition 

 

 

Simplification 

 

 

Conjunction 

 

 

Modus ponens 

 

 

Modus tollens 

 

 

Hypothetical syllogism 

 

 

Disjunctive syllogism 

 

 

Resolution 

 



Example 1 

Let us consider the following assumptions: "If it rains today, then we will not go on a canoe 

today. If we do not go on a canoe trip today, then we will go on a canoe trip tomorrow. Therefore 

(Mathematical symbol for "therefore" is ), if it rains today, we will go on a canoe trip 

tomorrow. To make use of the rules of inference in the above table we let p be the proposition 

"If it rains today", q be " We will not go on a canoe today" and let r be "We will go on a canoe 

trip tomorrow". Then this argument is of the form: 

 

Example 2 

Let us consider a more complex set of assumptions: "It is not sunny today and it is colder than 

yesterday". "We will go swimming only if it is sunny", "If we do not go swimming, then we will 

have a barbecue", and "If we will have a barbecue, then we will be home by sunset" lead to the 

conclusion "We will be home before sunset." Proof by rules of inference: Let p be the 

proposition "It is sunny this today", q the proposition "It is colder than yesterday", r the 

proposition "We will go swimming", s the proposition "We will have a barbecue", and t the 

proposition "We will be home by sunset". Then the hypotheses become 

and . Using our intuition we conjecture that the conclusion 

might be t. Using the Rules of Inference table we can proof the conjecture easily: 

 

Step Reason 

1.  Hypothesis 

2.  Simplification using Step 1 



3.  Hypothesis 

4.  Modus tollens using Step 2 and 3 

5.  Hypothesis 

6. s Modus ponens using Step 4 and 5 

7.  Hypothesis 

8. t Modus ponens using Step 6 and 7 

 

 

Proof of contradiction: 

The "Proof by Contradiction"  is  also known as reductio ad absurdum,  which is probably Latin 

for "reduce it to something absurd". 

Here's the idea: 

1. Assume that a given proposition is untrue.  

2. Based on that assumption reach two conclusions that contradict each other.  

This is based on a  classical formal logic construction known as Modus Tollens:  If P implies Q 

and Q is false, then P is false.   In this case, Q is a proposition of the form (R and not R) which is 

always false.   P is the negation of the fact that we are trying to prove and if the negation is not 

true then the original proposition must have been true.  If  computers are not "not stupid"  then 

they are stupid.  (I hear that "stupid computer!" phrase a lot around  here.) 

Example: 

Lets prove that there is no largest prime number (this is the idea of Euclid's original proof).  

Prime numbers are integers with no exact integer divisors except 1 and themselves. 



1. To prove: "There is no largest prime number" by contradiction.    

2. Assume: There is a largest prime number, call it p.  

3. Consider the number N  that is one larger than the product of all of the primes smaller 

than or equal to p.  N=1*2*3*5*7*11...*p + 1.  Is it prime?   

4. N is at least as big as p+1 and so is larger than p and so, by Step 2, cannot be prime.  

5. On the other hand,  N has no prime factors between 1 and p because they would all leave 

a remainder of 1.  It has no prime factors larger than p because Step 2 says that there are 

no primes larger than p.  So N has no prime factors and therefore must itself be prime 

(see note below).   

We have reached a contradiction (N is not prime by Step 4, and N is prime by Step 5) and 

therefore our original assumption that there is a largest prime must be false.      

Note: The conclusion in Step 5  makes implicit use of one other important theorem:  The 

Fundamental Theorem of Arithmetic:  Every integer can be uniquely represented as the product 

of primes.     So  if N had a composite (i.e. non-prime) factor, that factor would itself have prime 

factors which would also be factors of N. 

Automatic Theorem Proving: 

Automatic Theorem Proving (ATP) deals with the development of computer programs that 

show that some statement (the conjecture) is a logical consequence of a set of statements (the 

axioms and hypotheses). ATP systems are used in a wide variety of domains. For examples, a 

mathematician might prove the conjecture that groups of order two are commutative, from the 

axioms of group theory; a management consultant might formulate axioms that describe how 

organizations grow and interact, and from those axioms prove that organizational death rates 

decrease with age; a hardware developer might validate the design of a circuit by proving a 

conjecture that describes a circuit's performance, given axioms that describe the circuit itself; or 

a frustrated teenager might formulate the jumbled faces of a Rubik's cube as a conjecture and 

prove, from axioms that describe legal changes to the cube's configuration, that the cube can be 

rearranged to the solution state. All of these are tasks that can be performed by an ATP system, 

given an appropriate formulation of the problem as axioms, hypotheses, and a conjecture.  

http://delphiforfun.org/programs/Math_Topics/proof_by_contradiction.htm#FundamentalTheorem


The language in which the conjecture, hypotheses, and axioms (generically known as formulae) 

are written is a logic, often classical 1st order logic, but possibly a non-classical logic and 

possibly a higher order logic. These languages allow a precise formal statement of the necessary 

information, which can then be manipulated by an ATP system. This formality is the underlying 

strength of ATP: there is no ambiguity in the statement of the problem, as is often the case when 

using a natural language such as English. Users have to describe the problem at hand precisely 

and accurately, and this process in itself can lead to a clearer understanding of the problem 

domain. This in turn allows the user to formulate their problem appropriately for submission to 

an ATP system.  

The proofs produced by ATP systems describe how and why the conjecture follows from the 

axioms and hypotheses, in a manner that can be understood and agreed upon by everyone, even 

other computer programs. The proof output may not only be a convincing argument that the 

conjecture is a logical consequence of the axioms and hypotheses, it often also describes a 

process that may be implemented to solve some problem. For example, in the Rubik's cube 

example mentioned above, the proof would describe the sequence of moves that need to be made 

in order to solve the puzzle.  

ATP systems are enormously powerful computer programs, capable of solving immensely 

difficult problems. Because of this extreme capability, their application and operation sometimes 

needs to be guided by an expert in the domain of application, in order to solve problems in a 

reasonable amount of time. Thus ATP systems, despite the name, are often used by domain 

experts in an interactive way. The interaction may be at a very detailed level, where the user 

guides the inferences made by the system, or at a much higher level where the user determines 

intermediate lemmas to be proved on the way to the proof of a conjecture. There is often a 

synergetic relationship between ATP system users and the systems themselves:  

 The system needs a precise description of the problem written in some logical form,  

 the user is forced to think carefully about the problem in order to produce an appropriate 

formulation and hence acquires a deeper understanding of the problem,  

 the system attempts to solve the problem,  

 if successful the proof is a useful output,  



 if unsuccessful the user can provide guidance, or try to prove some intermediate result, or 

examine the formulae to ensure that the problem is correctly described,  

 and so the process iterates.  

ATP is thus a technology very suited to situations where a clear thinking domain expert can 

interact with a powerful tool, to solve interesting and deep problems. Potential ATP users need 

not be concerned that they need to write an ATP system themselves;  there are many ATP 

systems readily available for use. 
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